Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline.
نویسندگان
چکیده
Xylem within trees varies in its hydraulic efficiency and safety. Trees at the alpine timberline were expected to exhibit a hydraulic architecture protecting the leader shoot from winter embolism. Hydraulic and related anatomical parameters were compared as well as seasonal courses of winter embolism in leader shoots and twigs of Norway spruce trees growing at 2000 m. Leader shoots had a 1.4-fold higher specific hydraulic conductivity (ks) as well as a 4.9-fold higher leaf specific conductivity (kl) than side twigs. Vulnerability to drought-induced embolism was lower in leader shoots with a 50% loss of conductivity occurring at a water potential (Psi 50) 0.7 MPa lower than in twigs. Higher ks and kl were related to 1.2-fold wider tracheid diameters in leader shoots. Lower vulnerability corresponded to smaller pit dimensions but not to wood density. High ks and kl reflect the hydraulic dominance of the leader shoot, which is important for its water supply during summer. Low vulnerability protects the leader shoot from embolism during the winter season. In field measurements at the timberline during the winter of 2001/2002, conductivity losses of up to 56% were observed only in twigs while leader shoots showed little or no embolism. Results demonstrate that leader shoot xylem is both hydraulically efficient and safe.
منابع مشابه
Winter at the alpine timberline. Why does embolism occur in norway spruce but not in stone pine?
Conifers growing at the alpine timberline are exposed to frost drought and freeze-thaw cycles during winter-stress factors known to induce embolism in tree xylem. The two dominant species of the European Central Alps timberline were studied: Norway spruce (Picea abies [L.] Karst) and stone pine (Pinus cembra), which usually reaches higher altitudes. We hypothesized to find embolism only at the ...
متن کاملEffects of Temperature and Season on In Vitro Establishment and Shoot Multiplication of Picea abies (L.) H. Karst
Plant propagation originated from the mature tissues is the most desirable method in producing clonal plants, however microbial contamination usually is the main concern during regeneration processes. Moreover, commercial production of plants using clonal propagation is considered as high throughput method due to the removal of seasonal barriers, lower cost of production with higher yield wh...
متن کاملFrost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.
Drought stress can cause xylem embolism in trees when the water potential (psi) in the xylem falls below specific vulnerability thresholds. At the alpine timberline, frost drought is known to cause excessive winter embolism unless xylem vulnerability or transpiration is sufficiently reduced to avoid critical psi. We compared annual courses of psi and embolism in Picea abies, Pinus cembra, Pinus...
متن کاملNutrient Dynamics and Decomposition rate of Norway Spruce Needles in Stråsan and Lajim stands
Climate changes due to changes in a habitat leads to differences in the rate of decomposition and nutrient dynamics of leaflitters, which has many effects on the controlling factors of the decomposition process. In the present study, the rate of decomposition and nutrient dynamics of Norway spruce was evaluated for 363 days in the two forestation sites in the natural and foreign habitats, ...
متن کاملNatural Regeneration of Scots Pine and Norway Spruce Close to the Timberline in Northern Finland
Two different datasets were analyzed in order to clarify the factors that affect regeneration success of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in the climatically extreme areas in northern Finland. First, pine seed maturity and the number of cones in the trees were investigated at five pairs of study sites during the period 1997–2003. Secondly, the rate of seedling estab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 54 392 شماره
صفحات -
تاریخ انتشار 2003